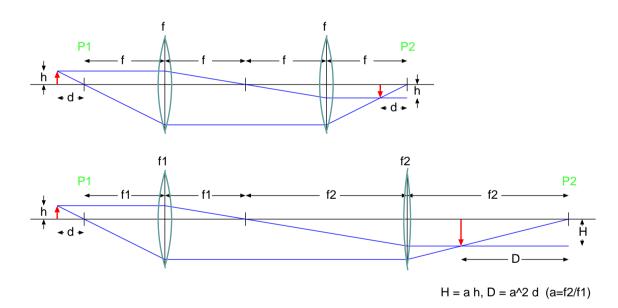
望遠鏡 / ビームエキスパンダによる結像


mm@ils

2010年1月13日

書いてあること

よく知られていることのような気はするが、2 枚の凸レンズを焦点距離の和だけ離しておいた光学系(いわゆるケプラー望遠鏡とかビームエキスパンダとか)による結像の物体と像の位置の関係は完全な比例関係になる(縦倍率が一定・横倍率ももちろん一定だけど)。

1 作図

左のレンズ(焦点距離 f_1)から左に f_1 の位置 P_1 にある物体の像は右のレンズ(焦点距離 f_2)から右に f_2 の位置 P_2 にできる。物体の位置を d だけずらしたとき像の位置のずれは $D=\alpha^2$ d となる。ここで $\alpha=f_2/f_1$ (つまり α は横倍率)。特に $f_1=f_2$ のときは縦・横倍率ともに 1 となる。つまり物体に対してレンズ系を動かしても像の位置は変わらない。

2 応用?

計測用の顕微鏡として上の図の左のレンズが対物レンズ、右のレンズを結像レンズとし、像面にイメージセンサ等を置いた配置を考える。物体(試料)に凹凸があり、ピント面を動かす必要があるとき、物体とレンズの位置関係は固定したままイメージセンサの移動のみでピントを合わせても横倍率は変化しないし、イメージセンサの移動量は倍率の2乗倍拡大されているので微動機構が簡略化できる。またイメージセンサの移動量から容易に物体の縦方向の大きさを算出できる。